Von Erstbesiedlern zu vernetzten Gemeinschaften: simultane Bestimmung der Zusammensetzung und Ableiten Spezies-gebundener Interaktionen fossiler sowie rezenter pro- und eukaryotischer mikrobieller Gemeinschaften

 

Antragsteller

Professor Dr. Thomas Friedl
Georg-August-Universität Göttingen
Albrecht-von-Haller-Institut der Pflanzenwissenschaften
Experimentelle Phykologie und Sammlung von Algenkulturen

Professor Dr. Dirk Wagner
Helmholtz-Zentrum Potsdam
Deutsches GeoForschungsZentrum (GFZ)
Department 5
Sektion 5.3: Geomikrobiologie

 

 

Projektbeschreibung

Ziel des Projektes ist ein Verständnis der Entwicklung mikrobieller Gemeinschaften in Böden, vom ersten Auftreten bis zu komplexen Netzwerken. Mikroorganismen nehmen entscheidenden Einfluss auf die Entwicklung von Böden unter extremen Bedingungen. Veränderungen der Umwelt, etwa Nährstoffzunahme oder Temperaturanstieg, führen unmittelbar zu Veränderungen in den mikrobiellen Gemeinschaften. Antarktische Böden sind wegen ihres sehr geringen Nährstoffgehaltes empfindliche Ökosysteme; sie gelten als sehr gute Zeiger von Umweltveränderungen. Unsere zentrale Arbeitshypothese beinhaltet, dass prokaryotische Mikroorganismen die Entwicklung von Bodenlebensräumen in der Antarktis in Gang setzen und anschließend ein komplexes Netzwerk unterschiedlicher pro- und eukaryotischen Mikroorganismen entsteht, das auf der Basis unterschiedlicher Funktionen innerhalb des Netzwerkes schließlich zur stabilen Etablierung des Bodenhabitats führt. Eukaryotische Algen könnten bereits als Pioniere in frühen Sukzessionsstadien auftreten. Zum Testen der Hypothesen wird das Projekt wird die Expertise von Universität Göttingen und GFZ Potsdam zusammenzuführen. Wir werden bereits vorhandene Sedimentproben aus fünf Transsekten an Gletscherresten arider eisfreier Oasen der Ostantarktis (Larsemann-Berge, Prydz Bucht) untersuchen. Eine umfassende Analyse physiko-chemischer Parameter der Proben ist dabei Voraussetzung, die mikrobielle Diversität in Bezug zu geochemischen Variablen setzen zu können. Aufgrund der extremen Nährstoffarmut und Abgeschiedenheit des Untersuchungsgebietes erwarten wir eine erhebliche Anzahl noch unbekannter Arten in unseren Untersuchungsgebieten, die eine wertvolles Potential für biotechnologischer Anwendungen bergen können. Wir erweitern das Entfernung-steht-für-Zeit-Konzept von Chronosequenzen um den Mikromaßstab durch Vergleiche zwischen extrazellulärer und intrazellulärer DNA von Mikroorganismen. Durch den Einsatz einer neuartigen Methode zur DNA-Extraktion wird eine genaue Unterscheidung zwischen vergangenen (fossilen) und lebenden mikrobiellen Gemeinschaften erreicht. Beide DNA-Pools dienen zum Erfassen der taxonomischen Diversität der mikrobiellen Gemeinschaften auf Artniveau. Durch ultratiefe Sequenzierung (Deep Sequencing; Illumina Miseq) anhand zweier unterschiedlich variabler rRNA Genabschnitte wird eine Auflösung auf dem Artniveau erreicht. Das ist wichtig um für die Entwicklung früher Bodenökosysteme maßgebliche Spezies-gebundene Interaktionen innerhalb mikrobieller Gemeinschaften über die Grenzen taxonomischer Abteilungen und Domänen hinweg aufdecken zu können. Mit Analysen funktioneller Gene werden Struktur- und Funktionsbeziehungen zwischen pro- und eukaryotischen Mikroorganismen in Stoffflüssen des Kohlen- und Stickstoffs erfasst. Schließlich werden nach Abschätzen relativer Abundanzen der einzelnen Organismen- und Funktionsgruppen durch quantitative qPCR Spezies-Interaktionen zur mikrobiellen Produktivität abgeleitet.

 

DFG-Verfahren: Infrastruktur-Schwerpunktprogramme

Kooperationspartner: Professor Dr. Rolf Daniel

Förderung seit 2017